Mathematical Modeling and Simulation of Intravascular Drug Delivery from Drug-Eluting Stents with Biodegradable PLGA Coating

نویسنده

  • Xiaoxiang Zhu
چکیده

Drug-eluting stents (DES) are commonly used in coronary angioplasty procedures. A DES elutes drug compounds from a thin polymeric coating into the surrounding coronary artery tissue to reduce in-stent restenosis (a significant lumen loss due to growth of vascular tissue). Biodurable (non-erodible) polymers are often used in the current DES coatings, which stay permanently in the patients. While promising treatment results were obtained, in-stent restenosis remains an issue and late in-stent thrombosis, which is associated with hypersensitivities to the polymer coatings, is also reported. Increasing interests have been raised towards the design of a more biocompatible coating, in particular a poly(lactic acid-co-glycolic acid) (PLGA) coating, for DES applications to improve the drug delivery and reduce adverse outcomes in patients. This dissertation aims to develop a mathematical model for describing the process of drug release from a biodegradable PLGA stent coating, and subsequent drug transport, pharmacokinetics, and distribution in the arterial wall. A model framework is developed in the first part of the dissertation, where a biodurable stent coating is considered, and the intravascular delivery of a hydrophobic drug from an implanted DES in a coronary artery is mathematically modeled. The model integrates drug diffusion in the coating with drug diffusion and reversible drug binding in the arterial wall. The model was solved by the finite volume method. The drug diffusivities in the coating and in the arterial wall were investigated for the impact on the drug release and arterial drug uptake. In particular, anisotropic vascular drug diffusivities result in slightly different average arterial drug levels but can lead to very different spatial drug distributions, and is likely related to the reported non-uniform restenosis thickness distribution in the artery cross-section. The second part of the dissertation focuses on modeling drug transport in a biodegradable poly(D,L-lactic-co-glycolic acid) (PLGA) coating. A mathematical model for the PLGA degradation, erosion, and coupled drug release from PLGA stent coating is developed and validated. An analytical expression is derived for PLGA mass loss. The drug transport model incorporates simultaneous drug diffusion through both the polymer solid and the liquid-filled pores in the coating, where an effective drug diffusivity model is derived taking into account factors including polymer molecular weight change, stent coating porosity change, and drug partitioning between solid and aqueous phases. The model predicted in vitro sirolimus release from PLGA stent coating, and demonstrated

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling and analysis of drug-eluting stents with biodegradable PLGA coating: consequences on intravascular drug delivery.

Increasing interests have been raised toward the potential applications of biodegradable poly(lactic-co-glycolic acid) (PLGA) coatings for drug-eluting stents in order to improve the drug delivery and reduce adverse outcomes in stented arteries in patients. This article presents a mathematical model to describe the integrated processes of drug release in a stent with PLGA coating and subsequent...

متن کامل

Computational modeling of coated biodegradable stents

Biodegradable stents are a promising technological development, as they temporarily support the stenotic blood vessel during its healing period, leaving no obstacle for possible future interventions and avoiding long term side effects of conventional drug eluting stents. Moreover, the biodegradable stent material forms an ideal vehicle for local drug delivery [1]. Finite element computer simula...

متن کامل

A three-dimensional mathematical model for drug delivery from drug-eluting stents

Current drug-eluting stent (DES) technology is not optimized with regard to the pharmacokinetics of drug release, more research on the <span style="font-size: 12pt; color: #000000; font-style: normal; ...

متن کامل

Development of a New Hybrid Biodegradable Drug-Eluting Stent for the Treatment of Peripheral Artery Disease

This study aimed to develop a new biodegradable stent for peripheral artery disease (PAD) that could provide sufficient radial force to maintain long-term patency and flexibility. All self-expandable hybrid biodegradable stents were designed by using a knitting structure composed of poly-L-lactic acid (PLLA) and nitinol. Four different types of stents were implanted in 20 iliac arteries in 10 m...

متن کامل

ANDRES KOTSAR A Biodegradable Urethral Stent with New Braided Configuration and Drug-eluting Properties

The first aim of this study was to evaluate the biocompatibility and degradation as well as potential clinical use of a new biodegradable PLGA (copolymer of L-lactide and glycolide acid) urethral stent with a braided mesh configuration. The second and at the same time, the main objective of this study was to develop a new drug-eluting biodegradable urethral stent. The biocompatibility profile o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014